Thursday, June 1, 2017

Third Gravitational Wave Detection, From Black-Hole Merger 3 Billion Light Years Away

Photo
An artist’s conception shows two merging black holes similar to those detected by LIGO. Astronomers said Thursday that they had felt space-time vibrations known as gravitational waves from the merger of a pair of mammoth black holes resulting in a pit of infinitely deep darkness.CreditAurore Simonnet/Sonoma State/Caltech/MIT/LIGO
The void is rocking and rolling with invisible cataclysms.
Astronomers said Thursday that they had felt space-time vibrations known as gravitational waves from the merger of a pair of mammoth black holes resulting in a pit of infinitely deep darkness weighing as much as 49 suns, some 3 billion light-years from here.
This is the third black-hole smashup that astronomers have detected since they started keeping watch on the cosmos back in September 2015, with LIGO, the Laser Interferometer Gravitational-Wave Observatory. All of them are more massive than the black holes that astronomers had previously identified as the remnants of dead stars.
In less than two short years, the observatory has wrought twin revolutions. It validated Einstein’s longstanding prediction that space-time can shake like a bowlful of jelly when massive objects swing their weight around, and it has put astronomers on intimate terms with the most extreme objects in his cosmic zoo and the ones so far doing the shaking: massive black holes.
“We are moving in a substantial way away from novelty towards where we can seriously say we are developing black-hole astronomy,” said David Shoemaker, a physicist at the Massachusetts Institute of Technology and spokesman for the LIGO Scientific Collaboration, an international network of about 1,000 astronomers and physicists who use the LIGO data. They and a similar European group named Virgo are collectively the 1,300 authors of a report on the most recent event that will be published in the journal Physical Review Letters on Thursday.
Continue reading the main story
“We’re starting to fill in the mass spectrum of black holes in the universe,” said David Reitze, director of the LIGO Laboratory, a smaller group of scientists headquartered at Caltech who built and run the observatory.
The National Science Foundation, which poured $1 billion into LIGO over 40 years, responded with pride. “This is exactly what we hoped for from N.S.F.’s investment in LIGO: taking us deeper into time and space in ways we couldn’t do before the detection of gravitational waves,” Frances Cordova, the foundation’s director, said in a statement. “In this case, we’re exploring approximately 3 billion light-years away!”
In the latest LIGO event, a black hole 19 times the mass of the sun and another black hole 31 times the sun’s mass, married to make a single hole of 49 solar masses. During the last frantic moments of the merger, they were shedding more energy in the form of gravitational waves than all the stars in the observable universe.
A simulation of an event known as GW170104, a merger of two black holes, and how it warped space-time. LIGO/Caltech/MIT/SXS Collaboration
After a journey lasting 3 billion years, that is to say, a quarter of the age of the universe, those waves started jiggling LIGO’s mirrors back and forth by a fraction of an atomic diameter 20 times a second. The pitch rose to 180 cycles per second in about a tenth of a second before cutting off.
Zsuzsanna Marka, an astronomer at Columbia University, was sitting in an office on the morning of Jan. 4 when she got an email alert. She started to smile but then remembered she was not alone and the other person was not a member of LIGO, so she couldn’t say why she was smiling.
“I just kept smiling,” she said.
Upon further analysis it proved to be a perfect chirp, as predicted by Einstein’s equations. Because of the merger’s great distance, the LIGO scientists were able to verify that different frequencies of gravity waves all travel at the same speed, presumably the speed of light. As Dr. Reitze said, “Once again Einstein triumphs.”
“That’s not surprising,” Dr. Reitze went on, adding, “at some point he’s going to be wrong, and we’ll be looking.”
Poor Einstein.
Black holes were an entirely unwelcome consequence of his theory of general relativity that ascribes gravity to the warping of space-time geometry by matter and energy. Too much mass in one place, the equations said, could cause space to wrap itself around in a ball too tight and dense for even light to escape. In effect, Einstein’s theory suggested, matter, say a dead star, could disappear from the universe, leaving behind nothing but its gravitational ghost.
Einstein thought that nature would have more sense than that. But astronomers now agree that the sky is dotted with the dense dark remnants of stars that have burned up all their fuel and collapsed, often in gigantic supernova explosions. Until now, they were detectable only indirectly by the glow of X-rays or other radiation from doomed matter heated to stupendous degrees as it swirls around a cosmic drain.
But what telescopes cannot see, gadgets like LIGO now can feel, or “hear.”
Gravitational waves alternately stretch and squeeze space as they travel along at the speed of light. LIGO was designed to look for these changes by using lasers to monitor the distances between mirrors in a pair of L-shaped antennas in Hanford, Wash., and in Livingston, La. There is another antenna in Italy known as Virgo now undergoing its final testing. When it is online, possibly later this summer, having three detectors will greatly improve astronomers’ ability to tell where the gravitational waves are coming from.
The detectors were designed and built and rebuilt over 40 years to be able to detect collisions of neutron stars — the superdense remnants of some kinds of supernova explosions. Astronomers know such pairs exist in abundance, doomed someday for a fiery ending.
 
Video

LIGO Hears Gravitational Waves Einstein Predicted

About a hundred years ago, Einstein predicted the existence of gravitational waves, but until now, they were undetectable.
 By DENNIS OVERBYE, JONATHAN CORUM and JASON DRAKEFORD on Publish DateFebruary 11, 2016. Photo by Artist's rendering/Simulating eXtreme Spacetimes. Watch in Times Video »
Colliding black holes, being more massive, would be even easier to detect, but LIGO’s founders and funders at the National Science Foundation mostly did not know if there were any around to detect.
Now they know.
The current version of the observatory, known as Advanced LIGO, was still preparing for its first official observing run, in September 2015, when it recorded the collision of a pair of black holes 36 and 29 times as massive as the sun. A second collision, on Dec. 26, 2015, was also confirmed to be massive black holes. A third event in October of that year was probably a black hole merger, the collaboration said.
The burning question now is: Where did such massive black holes come from?
“How were such large black-hole binaries created? How did they form?” Szabolcs Marka, a physics professor at Columbia and LIGO member, said recently. “This is indeed one of the big questions of our field today.”
One possibility is that they were born that way, from a pair of massive stars orbiting each other that evolved, died, blew up and then collapsed again into black holes — all without either star getting kicked out of the system during one of those episodes of stellar violence.
Another idea is that two pre-existing black holes came together by chance and captured each other gravitationally in some crowded part of the galaxy, such as near the center, where black holes might naturally collect.
Astronomers won’t say which explanation is preferred, pending more data, but what Dr. Reitze calls a “tantalizing hint” has emerged from analysis of the Jan. 4 chirp, namely how the black holes were spinning.
If the stars that gave rise to these black holes had been lifting and evolving together in a binary system, their spins should be aligned, spinning on parallel axes like a pair of gold medal skating dancers at the Olympics, Dr. Reitze explained.
Examination of the January chirp, Dr. Reitze said, gives hints that the spins of the black holes were not aligned, complicating the last motions of their mating dance.

An Earthling’s Guide to Black Holes

Welcome to the place of no return — a region in space where the gravitational pull is so strong that not even light can escape it. This is a black hole.
“It was not a simple waltz, it was more like a couple of break dancers,” he said.
As for the original stellar identities of these dark dancers, the consensus, said Daniel Holz of the University of Chicago, is that they were probably very massive and primitive stars at least 40 times heavier than the sun.
According to theoretical calculations, stars composed of primordial hydrogen and helium and lacking heavier elements like oxygen and carbon, which astronomers with their knack for nomenclature call “metals,” can grow monstrously large. They could collapse directly into black holes when their brief violent lives were over without the benefit of a supernova explosion or other cosmic fireworks.
Dr. Holz said in an email: “It is indeed odd to think that some of the most dramatic stellar collapse do not result in massive stellar explosions outshining galaxies, but instead just involve a star winking out of existence. But that’s what the theory says should happen.”
As if on cue, just last week astronomers from Ohio State reported that a massive star called N6946-BH1 had suddenly disappeared. The star was in a spiral galaxy 22 million light-years away that is nicknamed the “Fireworks Galaxy” because so many supernova explosions happen in it.
The star, estimated to weigh as much as 25 suns had been brightening since 2009 and was presumably on its way to being a supernova. Instead it winked out in 2015. After a search for remains with the Hubble and Spitzer space telescopes, the astronomers concluded that the supernova had probably fizzled and the star had instead collapsed into a black hole.
In a news release from Ohio State, Kris Stanek, a co-leader of this discovery, said it could help explain the LIGO results and why astronomers didn’t see supernovas from really massive stars. “I suspect it’s much easier to make a very massive black hole if there is no supernova,” he said.
In an email Dr. Stanek wrote, “I am obviously biased, but I think this is a very important discovery, and one that the community is not yet fully ‘groking’ in how it will impact a number of things, including LIGO results.”
Dr. Holz agreed. He said, “We think this might be a channel for ‘heavy’ black hole formation, and it’s amazing to see it actually happening in real time.” Noting that the LIGO observations were in some sense the deaths of the black holes that collided, he added, “so now in some sense we get to watch both the birth and the death of the black holes.”

No comments:

Post a Comment